Use of a regional, relict landscape to measure vertical deformation of the eastern Tibetan Plateau
نویسندگان
چکیده
[1] Field work and topography analysis show that remnant, local areas of a low-relief landscape or erosion surfaces are geographically continuous across the southeastern Tibetan Plateau margin. We correlate these remnant surfaces as a paleolandscape that formed at low elevation. Remnants of this paleolandscape are preserved because incision of the fluvial system has been largely limited to major rivers and principal tributaries and has not yet progressed throughout the entire fluvial network. The incomplete adjustment of the fluvial system signals initiation of rapid bedrock incision into a developing plateau margin, and erosional denudation is concentrated in the major river channels. This interpretation contradicts earlier notions that low-gradient, regional topography is the product of regional elevation reduction by intense landscape dissection due to the presence of several large southeast flowing rivers. The modern altitude of the reconstructed paleolandscape (or ‘‘relict landscape’’) constrains the vertical displacement of the plateau surface in response to crustal thickening and subsequent erosion during the lateral growth of the Tibetan Plateau. Regional preservation of the relict landscape is consistent with minor surface disruption by late Cenozoic thrust faults and folds and supports a model of distributed lower crustal thickening. Because significant erosion is limited to narrow river gorges, an increase in the plateau elevation due to isostatic rebound is minor. Therefore we propose that the modern elevation of the relict landscape reflects isostatically compensated thickening of the lower crust.
منابع مشابه
Influence of mantle dynamics on the topographic evolution of the Tibetan Plateau: Results from numerical modeling
[1] We investigate numerically the evolution of crustal and lithospheric thickness, thermal structure, topography, and strain rate of the Tibetan Plateau through time, using the thin viscous sheet approach. We show that lithospheric mantle must have been removed from beneath Tibet to explain the present surface elevation and lack of regional surface slope. In the absence of this removal, the mo...
متن کاملCrustal structure and deformation of the SE Tibetan plateau revealed by receiver function data
We analyze a large amount of receiver function data recorded by regional seismic networks of the China Earthquake Administration to estimate crustal structure and deformation beneath the southeast margin of the Tibetan plateau and its surrounding areas. We develop a comprehensive analysis method that facilitates robust extraction of azimuthal seismic anisotropy from receiver function data. The ...
متن کاملThree dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography∗
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green’s functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We t...
متن کاملThe biogeography of soil archaeal communities on the eastern Tibetan Plateau
The biogeographical distribution of soil bacterial communities has been widely investigated. However, there has been little study of the biogeography of soil archaeal communities on a regional scale. Here, using high-throughput sequencing, we characterized the archaeal communities of 94 soil samples across the eastern Tibetan Plateau. Thaumarchaeota was the predominant archael phylum in all the...
متن کاملDifferential growth of the northern Tibetan margin: evidence for oblique stepwise rise of the Tibetan Plateau
Models of how high elevations formed across Tibet predict: (a) the continuous thickening of a "viscous sheet"; (b) time-dependent, oblique stepwise growth; and (c) synchronous deformation across Tibet that accompanied collision. Our new observations may shed light on this issue. Here, we use 40Ar/39Ar and (U-Th)/He thermochronology from massifs in the hanging walls of thrust structures along th...
متن کامل